Persistent defect in transmitter release and synapsin phosphorylation in cerebral cortex after transient moderate ischemic injury.

نویسندگان

  • Hayrunnisa Bolay
  • Yasemin Gürsoy-Ozdemir
  • Yildirim Sara
  • Rüstü Onur
  • Alp Can
  • Turgay Dalkara
چکیده

BACKGROUND AND PURPOSE Synaptic transmission is highly vulnerable to metabolic perturbations. However, the long-term consequences of transient metabolic perturbations on synapses are not clear. We studied the long-lasting changes in synaptic transmission and phosphorylation of presynaptic proteins in penumbral cortical neurons after transient moderate ischemia. METHODS Rats were subjected to 1 hour of middle cerebral artery occlusion. After reperfusion, electric activity of neurons in the peri-infarct region was recorded intracellularly and extracellularly in situ. Phosphorylation of synapsin-I and tyrosine residues was studied by immunohistochemistry. RESULTS Neurons in the penumbra displayed no postsynaptic potentials 1 to 3 hours after recirculation. However, these cells were able to generate action potentials and were responsive to glutamate, suggesting that postsynaptic excitability was preserved but the synaptic transmission was blocked because of a presynaptic defect. The synaptic transmission was still depressed 24 hours after recirculation in neurons in the peri-infarct area that survived ischemia. The amount of immunoreactive synapsin-I, synaptophysin, and synaptotagmin was not appreciably changed for 72 hours after reperfusion. However, phosphorylation of synapsin-l was significantly decreased, whereas phosphotyrosine immunoreactivity was increased, suggesting a selective defect in synapsin-I phosphorylation. CONCLUSIONS These data demonstrate that synaptic transmission may be permanently impaired after transient moderate brain injury. Since postsynaptic excitability is preserved, the transmission failure is likely to be caused by presynaptic mechanisms, one of which may be impaired phosphorylation of presynaptic proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat

Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...

متن کامل

Neuroprotective Effect of Paroxetine on Memory Deficit Induced by Cerebral Ischemia after Transient Bilateral Occlusion of Common Carotid Arteries in Rat

Aims:Memory deficit is the most visible symptom of cerebral ischemia. The hippocampus is sensitive against cerebral ischemia. Oxidative stress and inflammation are involved in the pathological process after cerebral ischemic injury. Paroxetine has anti-oxidative and anti-inflammatory effects. In this study the effect of paroxetine on memory deficit after cerebral ischemia was investigated. Meth...

متن کامل

Neuroprotective Effect of Paroxetine on Memory Deficit Induced by Cerebral Ischemia after Transient Bilateral Occlusion of Common Carotid Arteries in Rat

Aims:Memory deficit is the most visible symptom of cerebral ischemia. The hippocampus is sensitive against cerebral ischemia. Oxidative stress and inflammation are involved in the pathological process after cerebral ischemic injury. Paroxetine has anti-oxidative and anti-inflammatory effects. In this study the effect of paroxetine on memory deficit after cerebral ischemia was investigated. Meth...

متن کامل

Evaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat

Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 33 5  شماره 

صفحات  -

تاریخ انتشار 2002